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In the numerical simulation of complex 
physical phenomena, the crucial 
requirement is predictability, i.e., that 
the simulation results remain faithful to 

the actual physical processes. Accordingly, the 
generation and accumulation of numerical 
error during the simulation is of special 
concern, since it introduces distortions that 
fundamentally alter the fidelity of the  
simulation. Errors resulting from a lack  
of spatial resolution are particularly  
deleterious. However, over-resolving is  
computationally expensive. 

Adaptive grids attempt to provide sufficient 
resolution where needed while minimizing 
the computational cost of the simulation.  
Our emphasis is on moving grid methods 
(also known as r-refinement), where grid 
points are able to move to follow the solution. 
The grid positions are determined from 
a suitable grid evolution equation. While 
many grid evolution equations have been 
proposed in the literature [1], here we focus 
on harmonic maps [2], which are desirable 
because, under certain conditions, they 
guarantee the existence and uniqueness of  
the grid mapping.

One drawback of harmonic function 
theory is that the resulting grid evolution 
equation is generally very nonlinear and 
stiff. Furthermore, physics models for 
which spatial adaptation is necessary are 
typically very stiff as well. For such systems, 
implicit temporal schemes are preferred for 
efficiency, as they allow one to use time steps 
comparable to the dynamical time scale of 
interest in the problem at hand. However, 
when coupled to a grid evolution equation, 
such large implicit time steps may not be 
advantageous from an accuracy standpoint 
unless both grid and physics equations are 
solved in a coupled manner.  
 
The coupled nonlinear solution of such 
physics-grid systems represents, however, 

a formidable numerical challenge. It is this 
challenge that we undertake in this research. 
At the heart of the matter is to demonstrate 
that developing a scalable, efficient nonlinear 
algorithm to solve such systems is indeed 
possible. We base our strategy on Newton-
Krylov methods [3], which are ideally suited 
for this task owing to their robustness and the 
possibility of preconditioning. 

We proceed to demonstrate two crucial 
issues. First, that a fully implicit, coupled 
solution of the grid equation is indeed 
cost effective with respect to uniform grid 
computations. And second, that a suitable 
effective preconditioning strategy based 
on multigrid (MG) methods for the grid 
equation in multidimensional problems has 
been successfully developed.

To determine the cost effectiveness of implicit 
adaptive grid techniques, we define the 
efficacy η as η  = (error ×  cost) –1. The efficacy 
is maximized for small errors and small 
computational costs, making it a suitable 
figure-of-merit to compare adaptive vs static 
grid computations. We have performed such 
a comparison in 1D for two sets of problems: 
a nonlinear heat equation problem (Marshak 
wave) and Burgers equation. To generate the 
adaptive grid we used Winslow’s variable 
diffusion method [1] with an arc-length merit 
function. In future work we plan to replace 
the arc-length merit function with more 
rigorous error estimators [4, 5]. We have 
employed unpreconditioned GMRES as the 
linear Krylov solver, implemented Jacobian-
free [3]. In the comparison, the error is 
computed with respect to a very fine uniform-
grid solution, and the CPU cost is normalized 
to the number of GMRES iterations to factor 
out the lack of preconditioning [effective 
preconditioning results in a constant number 
of GMRES iterations with grid refinement 
(see Table 1 for 2D)]. Results are presented 
in Fig. 1. The adaptive grid outperforms the 
uniform grid in every respect: for a given 
cost, the adaptive grid is more accurate,  
and for a given accuracy, the adaptive grid is 
cheaper.

While the 1D examples above do not 
require preconditioning (GMRES gives 
the exact answer in as many iterations as 
nodes are present in the grid), scalability 
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in 2D applications requires effective 
preconditioning for efficiency. Multigrid 
methods are ideally suited for this task, as 
they have been shown in many applications 
[6, 7] to deliver mesh-independent 
GMRES convergence rates. For a scalar 
error monitor function w(x  , t), harmonic 
function theory results in Winslow’s variable 
diffusion method grid evolution equation 
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This is the (nonlinear) grid evolution 
equation for a given error function w  
(which generally depends on the solution of 
a physical model [4, 5]). We have succeeded 
in developing a scalable MG-preconditioned 
Newton-Krylov solver for Eq. 1, as evidenced 
in Table 1, where it is shown that the CPU 
time scales linearly (optimally) with the 
number of mesh points. This development 
opens the possibility of a simultaneous 
solution of the grid and physics equations in 

a given implicit time step. A sample 2D grid 
obtained with Eq. 1 for a Gaussian annulus , 

w =1+ 9*exp[ r2 – r 20 
 

 
 /σ

2] with r0 = 

0.4, σ  = 0.1, and r centered at x = y = 0.5 is 
shown in Fig. 1 (right).
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Grid Newton its. Total GMRES its. CPU(s) 
32x32 7 1 10 
64x64 7 3 46 

128x128 7 2 170 
 
 

Figure 1— 
Left and middle: 
efficacy plot comparing 
adaptive vs uniform 
grid solutions for 
heat equation (left) 
and Burgers equation 
(middle). Right:  
sample 2D grid for  
the Gaussian annulus  
error function.

Table 1— 
Grid convergence 
study of Eq. 1 for the 
Gaussian annulus 
error function.

2D grid adapted to gaussian annulus profile
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